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Fuzzy cognitive maps-based modelling of residential 
mobility dynamics: GeoComputation approach 

Igor Agbossou* 

Abstract 

This paper is concerned with proposing a fuzzy cognitive 
maps (FCMs) driven approach for geocomputing urban 
dynamics (social, spatial and temporal) as a complex system. 
After an overview of FCMs, mathematical fundamentals 
methodology that this theory suggests are examined. Then, 
the formalization and algorithm implementation of a model 
apply to residential mobility in urban space based on FCMs 
is described. Very good results were obtained, demonstrating 
that the use of these modelling approach is good and reliable. 
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Introduction 

Geographical systems are complex entities that require 
integrated spatial and temporal modelling approaches to 
better understand underlying patterns and processes. These 
modelling approaches are now multidisciplinary in nature as 
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geographers are not the only ones examining the 
multifaceted issues embedded in spatial patterns and 
dynamics. Hence, it is challenging to clearly situate 
spatiotemporal modelling within the domains of geographic 
information science, geocomputation (Openshaw, 2014) or 
geosimulation (Bennson, Torrens, 2004). A useful way of 
placing spatiotemporal modelling concepts is to consider 
them as being located in the intersection spaces of these tree 
disciplines. So, the inspiration for further advancement in 
spatiotemporal can be found in domains such as artificial 
intelligence, computer science, and complexity science 
among others. In this regard, the wide recognition of FCMs 
as a promising modelling and simulation methodology for 
complex systems (Papageorgiou et al., 2004), characterized 
by abstraction, flexibility and fuzzy reasoning promotes 
advanced research about large-scale geographical systems. 
Urban systems have been traditionally characterized by a 
large number of variables, nonlinearities and uncertainties. 
Modelling such systems can be hard in a computational 
sense and many quantitative techniques exist. Development 
of FCMs that accurately describe urban dynamics is a 
challenging task, which, in many cases cannot be fully 
completed based solely on human expertise. Interestingly, in 
the recent years we have witnessed the development of 
algorithms that support learning of FCMs from data 
(Xirogiannis and Glykas, 2004; Anninou and Groumpos, 
2014).   
 
 
Fuzzy cognitive map background 

Fuzzy Cognitive Maps (FCMs), introduced by Kosko (1986), 
are powerful tools for modeling dynamic systems. FCMs 
describe expert knowledge of complex systems with high 
dimensions and a variety of factors. An increased interest 
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about the theory and application of FCMs in complex 
systems has been also noted, and their validity and usefulness 
has been proved in the various fields (Eden et al., 2006; Eden 
et al., 2007). 
 

Theoretical foundations of Fuzzy Cognitive Map 
 
Fuzzy Cognitive Maps (Kosko, 1988, 1993) are signed 
directed graphs: they consist of nodes, so-called ‘‘concepts’’ 
that are connected through arrows that show the direction 
of influence between concepts. Causal and cognitive maps 
have been used to describe decision-based systems (Axelrod, 
1976). Fuzzy Cognitive Maps were supplied with fuzzy logic 
theory enhancing Cognitive Maps ability to present and 
model qualitatively dynamic systems. So, FCM is a soft 
computing modeling technique used for causal knowledge 
acquisition and supporting causal knowledge reasoning 
process. FCMs permit the necessary cycles for knowledge 
expression within their feedback framework of systems. 
FCMs originated as a combination of ideas and methods 
from fuzzy logic and neural networks theories and have been 
introduced by Kosko (1986). Neuro-fuzzy systems have 
been proposed as advanced techniques for modeling and 
controlling real world problems that are complex, usually 
imprecisely defined and require human intervention. Neuro-
fuzzy systems have the ability to incorporate human 
knowledge and to adapt their knowledge base via 
optimization techniques. They can play an important role in 
the conception, description and modelling complex systems. 
FCMs are regarded as a simple form of recursive neural 
networks. Concepts are equivalent to neurons, but other 
than neurons, they are not either ‘‘on’’ (= 1) or ‘‘off’’(= 0 or  
1), but can take states in-between and are therefore ‘‘fuzzy’’. 
Fuzzy concepts are non-linear functions that transform the 
path-weighted activations directed towards them (their 
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‘‘causes’’) into a value in [0,1] or [ 1;1]. When a neuron ‘‘fires’’ 
(i.e. when a concept changes its state), it affects all concepts 
that are causally dependent upon it. Depending on the 
direction and size of this effect, and on the threshold levels 
of the dependent concepts, the affected concepts may 
subsequently change their state as well, thus activating 
further concepts within the network. Because FCMs allow 
feedback loops, newly activated concepts can influence 
concepts that have already been activated before. As a result, 
the activation spreads in a non-linear fashion through the 
FCM net until the system reaches a stable limit cycle or fixed 
point. A FCM illustrates the whole system by a graph 
showing the effect and the cause along concepts. FCM is a 
simple way to describe the system’s model and behaviour in 
a symbolic manner, exploiting the accumulated knowledge 
of the system. A FCM integrates the accumulated experience 
and knowledge on the operation of the system, as a result of 
the method by which it is constructed, i.e., using human 
experts that know the operation of system and its behaviour 
in different circumstances. Moreover, FCM utilizes learning 
techniques, which have implemented in Neural Network 
Theory, in order to train FCM and choose appropriate 
weights for its interconnections. 
 

Fuzzy Cognitive Map representation 

 
Figure 1 illustrates a simple FCM consisting of five (5) 
concepts and ten (10) weighed arcs. Thus FCMs are directed 
graph capable of modelling interrelationships or causalities 
existing among concepts. Concept variables and causal 
relations constitute the fundamental elements of an FCM. 
Concept variables are represented by nodes, such as C1, C2, 
C3, C4 and C5. Causal variables always depict concept 
variables at the origin of arrows; effect variables, on other 
hand, represent concepts variables at the terminal point of 
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arrows. For example, looking in figure 1, at C1C2, C1 is said 
to impact C2 because C1 is the causal variable, whereas C2 is 
the effect variable. Each concept is characterized by a 
number Ai that represents its value and it results from the 
transformation of the real value of the system’s variable, for 
which this concept stands, in the interval [0,1]. Causality 
between concepts allows degrees of causality and not the 
usual binary logic, so the weights of the interconnections can 
range in the interval [-1, 1]. FCM models a system as an one-
layer network where nodes can be assigned concept 
meanings and the interconnection weights represent causal 
relationships among concepts. 
FCM is a graph shows the degree of causal relationship 
among concepts of the map knowledge expressions and the 
causal relationships are expressed by and fuzzy weights. 
Existing knowledge on the behaviour of the system is stored 
in the structure of nodes and interconnections of the map. 
Each one the key-factors of the system. Relationships 
between concepts have three possible types: (1) either 
express positive causality between two concepts: wij > 0   (2) 
negative causality: wij < 0 and (3) no relationship: wij = 0 
The value of wij indicates how strongly concept Ci influence 
concept Cj. The sign of wij indicates whether the 
relationships between concept Ci and Cj is direct or inverse. 
The direction of causality indicates whether concept Ci 
causes concept Cj or vice versa. These parameters have to be 
considered when a value is assigned to weight wij. 
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Figure 1 - A simple Fuzzy Cognitive Map model 

Mathematical formalization of Fuzzy Cognitive Map  

The simplest FCMs act as asymmetrical networks of 
threshold or continuous concepts and converge to an 
equilibrium point or limit cycles. At this level, they differ 
from Neural Networks in the way they are developed as they 
are based on extracting knowledge from experts. FCMs have 
nonlinear structure of their concepts and differ in their 
global feedback dynamics. The value Ai

t+1 for each concept 
Ci at each time step is calculated by the following general 
rule: 

𝐴𝑖
𝑡+1 = 𝑓(𝑘1 ∑ 𝑊𝑗𝑖𝐴𝑗

𝑡 + 𝑘2𝐴𝑖
𝑡)

𝑛

𝑗=1
𝑗≠𝑖

                                      (1)  

The k1 expresses the influence of the interconnected 
concepts in the configuration of the new value of the 

concept Ai and k2 represents the proportion of the 
contribution of the previous value of concept in the 
computation of the new value. This formulation assumes 

that a concept links to itself with a weight wii = 𝑘2. 

Namely, 𝐴𝑖
𝑡 and 𝐴𝑖

𝑡+1 are respectively the values of concept 

Ci at times t respectively t+1. wji is The weight of the 

interconnection from concept Cj to concept Ci and f is a 
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threshold function. The unipolar sigmoid function is the 
most used threshold function, (Liu and Satur, 1999) where 
λ>0 determines the steepness of the continuous function f . 
The sigmoid function ensures that the calculated value of 
each concept will belong to the interval [0,1]. 

𝑓(𝑥) =
1

1 + 𝑒−𝜆𝑥
                                                                  (2) 

 

Materials and methods 

The methodology approach followed for the 
implementation of the residential mobility FCM-based 
model consist of three discrete stages:  
1-  Concepts investigation for constructing the FCM. All the 
concepts that can affect the household’s residential choice.  
2- The causal relationships defined as fuzzy rules.  
3- Cellular automata-based geosimulation 

Concepts investigation for constructing the FCM 

The Concepts used in the development of the model are 
derived from determinants of residential mobility. These 
determinants are directly related to the household’s 
residential satisfaction that involves several influencing 
factors: objective residential environment, subjective 
residential environment, resident’s characteristics and 
housing allocation institution. 
Housing characteristics is the basic spatial scale of objective 
residential environment. Residents have high satisfaction 
with larger-sized and better forms housing. Chen, Zhang, 
and Yang (2013) analyzed Chinese residential survey data 
from Dalian and found that people are more satisfied with 
larger housing. Mohit, Ibrahim, and Rashid (2010) 
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investigate inhabitants of public housing in Kuala Lumpur, 
Malaysia and found that housing features, especially housing 
unit size, correlate positively with residential satisfaction. 
Ukoha and Beamish (1996) observed that residents in Abuja, 
Nigeria are dissatisfied with types of housing structure, 
building features and housing condition. 
Neighborhood characteristics, such as neighbourhood 
quietness, greenness, cleanness and security, are the key 
factors influencing residential satisfaction. Most studies 
found that neighborhood security are dominant predictors 
of residential satisfaction (Cook, 1988; Salleh, 2008). Salleh 
(2008) investigated residents in Pulau Pinang and 
Terengganu state in Malaysia and found neighbourhood 
facilities and environment are the dominant factors affecting 
residential satisfaction. Parkes, Kearns, and Atkinson (2002) 
found that the neighborhood factors, especially the place 
and condition of neighborhood, are much more important 
in predicting residential dissatisfaction than are socio-
demographic factors. 
Public facilities or infrastructure such as transportation, 
schools, healthcare, shopping, banking and parking facilities 
determine the degree of life convenience and thus have 
influences on residential satisfaction. Lu (1999) found that 
residents in public housing in Hong Kong are dissatisfied 
with public transportation. Ha (2008) found that residents of 
public housing in Korea are satisfied with the availability of 
healthcare, shopping and banking facilities, but dissatisfied 
with parking and landscaping facilities. Mohit and Azim 
(2012) showed that residents of public housing in 
Hulhumale, Maldives, are more satisfied with their public 
facilities than with their housing condition. 
The social environment, such as social relations and 
community cohesion and security, has influences on 
residential satisfaction. Adriaanse (2007) found that 
residential social climate, people's social perception of social 
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relationship, is the most significant factor to influence 
residential satisfaction. Mohit and Azim (2012) showed that 
inhabitants of public housing in Hulhumale are very satisfied 
with their social environment, especially regarding security 
and their relationships with their neighbors and community. 
Ibem and Aduwo (2013) found that people's cohesion and 
participation in the development of residences contributed 
to residential satisfaction. 
Household characteristics such as age, sex, household size 
and income have been proved to have a direct impact on 
residential satisfaction. For example, age is identified as a 
significant determinant of residential satisfaction by many 
scholars (Ibem and Amole, 2012). However, the influence of 
some factors remains unclear because the existing empirical 
results conflict with each other. For example, although one 
empirical study found that household size is negatively 
correlated with higher residential satisfaction (Galster, 1987), 
others found household size is positively related to 
satisfaction (Cook, 1988). The inconsistencies might result 
from residents' housing preferences across various groups of 
people in different counties. Further, household 
characteristics determine someone's ability to realize their 
housing needs and goals (Schwanen and Mokhtarian, 2004). 
Income status is one of the main factors that indicate this 
ability. 
It is believed that housing allocation institutions determining 
housing access type and housing adjustment freedom have 
an influence on residential satisfaction levels (Chen et al., 
2013). The level of freedom that one has to choose or adjust 
one's residential environment in order to get closer to one's 
residential preferences has an impact on one's resultant 
residential satisfaction. As home owning offers more 
freedom than renting, home owners are more satisfied than 
renters (Varady et al., 2001). James (2008) found that 
subsidized renters in the US are more satisfied than non-
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subsidized renters. In addition, as home ownership provides 
people with a sense of self-respect and pride, home owners 
are more satisfied with their residential situation than are 
renters. Empirically, Elsinga and Hoekstra (2005) showed 
that home owners are more satisfied than are tenants in 
many European countries. 
Table 1 reports the concepts used to construct the FCM-
based model of residential mobility. 
 
Table 1 - Concepts investigated for constructing the FCM 

Labels Concept description 

C1 Income 

C2 Position in life cycle 

C3 Level of degree 

C4 Owner 

C5 Tenant 

C6 Other occupancy status 

C7 Single person 

C8 Childless couple  

C9 Couple with children  

C10 Single parent family 

C11 Land price 

C12 Rents 

C13 Amenities 

C14 Environmental quality 

C15 House 

C16 Apartment 

The causal relationships defined as fuzzy rules 

The above review of studies shows that while various factors 
could have influences on residential satisfaction, and the 
influences may vary in different groups, countries and 
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societies. For example, Parkes, Kearns, and Atkinson (2002) 
found the relative importance of neighborhood and socio-
demographic factors is influenced by the characteristic of the 
place and time of their study. James (2008) emphasizes the 
influences of public housing project size on residential 
satisfaction.  
This indicates that specific case study and empirical research 
of the determinants of residential satisfaction are needed to 
be carried out for better guiding public housing policies. In 
addition, the impact of housing allocation institution on 
residential satisfaction is little studied. In this paper, the 
expert’s appreciation is taken into account. And the 
relationships between the determinants of residential 
mobility in term of concepts according to FCM-based 
modelling approach, are established using a series of fuzzy 
rules of the type “if the concept Ci is in sp then the causal 
relationship with concept Cj is wij”, where sp is one of the 
possible states of the concept Ci and wij will be the value of 
the causal relationships for this state. In this way, a set of 
rules defining the value of the relationship is used to 
determine the relationship value between two concepts. 
To define the set of rules, we define a general procedure. For 
instance, we assume that the state of each concept according 
to fuzzy sets in three zones illustrated in Fig.2.  

 
Figure 2 - Fuzzy state of each concept 

The state can be defined as a fuzzy variable composed by 
three fuzzy sets: high, medium and low. Additionally, the 
possible types of relationships between concepts can be like 
linguistic variable (table 2). Also, the type of relationships 
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can be defined as a fuzzy variable composed by nine sets: 
Complete+, High+, etc.  

Table 2 - Possible types of relationships between concepts 

Value Linguistic variable 

1.00 Complete+ 

0.75 High+ 

0.50 Medium+ 

0.25 Low+ 

0.00 Null 

-0.25 Low- 

-0.50 Medium- 

-0.75 High- 

-1.00 Complete-  

Then, we can define the following set of generic rules using 
the concept states and the possible types of relationships 
defined previously, to define the causal relationships 
between concepts: 

 If the preceding concept is High and the consequent 
one is also High, then the relationship is Complete+ 
(1.0). 

 If the preceding concept is High and the consequent 
one is also Medium, then the relationship is High+ 
(0.75). 

 If the preceding concept is High and the consequent 
one is also Low, then the relationship is Low+ (0.25). 

 If the preceding concept is Medium and the consequent 
one is also High, then the relationship is High+ (0.75). 

 If the preceding concept is Medium and the consequent 
one is also Medium, then the relationship is Medium- 
(-0.25). 
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 If the preceding concept is Medium and the consequent 
one is also Low, then the relationship is High- (-0.75). 

 If the preceding concept is Low and the consequent one 
is also High, then the relationship is High- (-0.75). 

 If the preceding concept is Low and the consequent one 
is also Medium, then the relationship is Medium- (-
0.50). 

 If the preceding concept is Low and the consequent one 
is also Low, then the relationship is Complete- (-1.0). 

The set of generic fuzzy rules follows an adaptation 
mechanism similar to the hebb learning rule (Papageorgiou 
et al., 2003; 2004; Anninou and Groumpos, 2014). These 
rules would be used to determine all the relationships 
between the different concepts. Thus, every relationship 
would be determined under the same set of rules.  

Cellular automata-based geosimulation 

The cellular automata concept was introduced in the mid-
1940s by John von Neumann (1951) and Stanislaw Ulam 
(1952) in the fields of mathematics, artificial intelligence and 
computing machinery (Turing, 1950). In the 1960s, John 
Conway presented ‘‘LIFE’’, a cellular automaton that is well 
known as ‘‘the game of life’’ and that is characterised by the 
following simple rules. A live cell stays alive if two or three 
of its neighbours are alive; otherwise, it dies. A dead cell will 
come to life if it has three living neighbours (Gardner, 1970). 
‘‘LIFE’’ became the most famous basic rule in the 
‘‘standard’’ CA and contributed greatly to its popularity. 
Between the 1970s and the 1990s, conventional CA were 
proposed to model geographical phenomena such as spatial 
dynamics (Couclelis, 1985) and various spatial processes 
(Phipps, 1989; Ceccchini and Viola, 1992). Since Wolfram 
demonstrated the capability of CA techniques to generate 
surprising fractal patterns (Wolfram, 1984), conventional CA 
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have been used to study urban fractal forms (Batty, 1991). In 
spite of the value of conventional CA that mimic the 
complex nature of geographical systems, a conventional CA 
can be inappropriate when modelling and predicting 
complex and dynamic land use processes realistically (White 
and Engelen, 1994). For purposes of land use dynamics, a 
more complex CA model (e.g., Constrained CA model) is 
needed (White and Engelen., 1997). Simply defined, land-use 
is the human use of land cover (e.g., Corine Land Cover 
technical guide, EEA, 2000). The complexity of a land use 
system depends on: (1) the inherent qualities of land use, (2) 
the multiple local spatial interactions between land use types 
(Agbossou et al., 2008; Agbossou 2010), (3) the neighbouring 
effects of land use activities, and (4) the aggregate level of 
demand for each land use activity. Naturally, time and 
various scale variables further complicate the linkage 
between the land-use system and the dynamics and therefore 
the rules and/or processes that permanently regulate the 
changes. Consequently, it is important to achieve several 
objectives in the modelling process: model and simulate 
related changes, dynamics and transformations, including 
their nature and content; the resulting processes, structures 
and configurations; and their location across time and space 
while predicting other potential changes. CA-based models 
can take these objectives into account (Portugali, 2004; Yeh 
and Li, 2002; Barredo et al., 2003). This study, which mimics 
complex land use patterns, utilises the fundamental 
properties of CA based models, which include (1) a regular 
discrete lattice of cells. In this model, each land use type is 
represented by a particular cell state; (2) the evolution of 
each cell takes place in discrete time steps; (3) each cell is 
characterised by a state that is taken from a finite set of 
states; (4) the state of the cell at each iteration is determined 
by the states of the cells within a large neighbourhood and 
the transition rules based on the FCM dynamics derived 
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from fuzzy relationships rules (these transitions are identical 
for all cells in the lattice and represent the neighbourhood 
influences); and (5) the large neighbourhood effects 
influence the studied cells. These properties permit CA-
based models to simulate the evolution of land use dynamics 
in response to the implementation of the residential mobility 
process. 

Results and discussion 

Experimentation of the model was carried out in the 
municipality of Saône (in eastern France). Each simulation is 
analyzed over a period of fifteen years with a reference 
situation, which is that of 2005. We postulate that, beyond 
15 years, experimentation with our scenarios would be too 
prone to societal transformations to be valid. Thus, our 
simulations are performed over a period from 2006 to 2020. 
Also, for all scenarios the spatial resolution remained the 
same (we took a spatial resolution of 30 meters). The passage 
of the grid to the initial configuration (which is a model very 
close to the reality of the spatial distribution of different 
types of housing in the area in 2005). Five types of land use 
are identified: green space, building land, house rented, 
owner-occupied house and owner-occupied apartment is 
used in the simulations. Indeed, in the database used to 
perform this simulation are not involved in serviced 
apartments households, and therefore land use materializing 
this household category is not included in the simulations. 
However, we wish in future research include this land use 
through a weight made from the data. The results suggest 
that spatial planning policy to curb suburbanization could 
turn to a pre consisting in implementing the idea of the 
following scenario: a pleasant living environment for all and 
demographic balance. This would actually work in reducing 
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urban pollution of all kinds (noise, pollution, incivility, 
insecurity, etc.) and develop more amenities. It will also, of a 
socio-demographic point of view, introduce incentives to 
maintain strong family cohesion. 
Indeed, analysis of the simulations of the spatial distribution 
of habitat for 2005-2015 shows that of temporality than 10 
years, we do not observe an increase in the type of housing 
"apartment for rent". 
 
 
 

 
Figure 3 - From meshwork of study zone to results 
 
Paradoxically, it is the habitat type "house property" that 
spreads. Faced with this result against-intuitive, we wanted 
to go further in the analysis. To do this, we launched the 
simulations of this scenario over a longer temporality, until 
2020 (Fig. 3) by observing the type of household "Singles" 
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and "Single parent". Again, the results are surprising. The 
year 2015 was a pivotal year, a year that would mark a 
dynamic shift of residential mobility for this population of 
households with an increase in apartments and lower houses. 
Thus we see emerge the idea of conversion spaces 
materialize timidly across the housing types. 
this result suggests us to focus in a forthcoming paper on the 
issue of the shrinking/reversing spaces in spatial planning. 

Conclusion  

This research introduces a new methodological framework 
for modelling, and simulating the residential mobility on the 
land use dynamics. The developed CA constrained by FCM-
based model provides specific land use scenarios through 
2020 that reflect the reality. 
A comparison of the scenarios shows that each land use type 
obeys specific dynamics that are primarily the result of 
‘‘push–pull effects’’ between different land use types, which 
are linked to the nature of the neighbourhood configuration 
and allow the model to run as a non-linear system. The 
allocation, distribution and redistribution of cells through 
space and time are central to the way that it allows the model 
to capture local spatial processes and to show net changes 
and growth in the study area. 
The complexity of the land use systems and the long-term 
spatial effects of the residential mobility dynamics are 
significant. Therefore, the model was demonstrated to be 
appropriate. However, the model requirements pose several 
limitations that we have to investigate in futures work with 
appropriate a complex dataset that is geographically 
integrated and harmonised in time and in surveying 
methodology.  
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